![]() |
Regla de la Cadena de Funciones de Varias VariablesAngel Carrillo Hoyo, Elena de Oteyza de Oteyza\(^2\), Carlos Hernández Garciadiego\(^1\), Emma Lam Osnaya\(^2\) | ![]() |
Solución:
Observamos el siguiente diagrama
La función \(f\) depende de \(x\) y \(y;\) tanto \(x\) como \(y\) dependen de \(r\) y \(s\).
Calculamos
\begin{eqnarray*} \dfrac{\partial z}{\partial r} & = &\dfrac{\partial f}{\partial x}\dfrac{ \partial x}{\partial r}+\dfrac{\partial f}{\partial y}\dfrac{\partial y}{ \partial r} \\ & = &\dfrac{\partial f}{\partial x}4r^{3}+\dfrac{\partial f}{\partial y} 15r^{2}s^{2} \\ & = &4r^{3}\dfrac{\partial f}{\partial x}+15r^{2}s^{2}\dfrac{\partial f}{ \partial y} \end{eqnarray*}
y
\begin{eqnarray*} \dfrac{\partial z}{\partial s} & = &\dfrac{\partial f}{\partial x}\dfrac{ \partial x}{\partial s}+\dfrac{\partial f}{\partial y}\dfrac{\partial y}{ \partial s} \\ & = &\dfrac{\partial f}{\partial x}2s+\dfrac{\partial f}{\partial y}10r^{3}s \\ & = &2s\dfrac{\partial f}{\partial x}+10r^{3}s\dfrac{\partial f}{\partial y} \end{eqnarray*}
Ahora consideramos el siguiente diagrama
donde observamos que tanto \(\dfrac{\partial f}{\partial x}\) como \(\dfrac{ \partial f}{\partial y}\) dependen de \(x\) y \(y\) que a su vez dependen de \(r\) y \(s.\)
Calculamos
\begin{eqnarray*} \dfrac{\partial ^{2}z}{\partial r^{2}} & = &\dfrac{\partial }{\partial r} \left( \dfrac{\partial z}{\partial r}\right) \\ & = &\dfrac{\partial }{\partial r}\left( 4r^{3}\dfrac{\partial f}{\partial x} +15r^{2}s^{2}\dfrac{\partial f}{\partial y}\right) \\ & = &\dfrac{\partial }{\partial r}\left( 4r^{3}\right) \dfrac{\partial f}{ \partial x}+4r^{3}\dfrac{\partial }{\partial r}\left( \dfrac{\partial f}{ \partial x}\right) +\dfrac{\partial }{\partial r}\left( 15r^{2}s^{2}\right) \dfrac{\partial f}{\partial y}+15r^{2}s^{2}\dfrac{\partial }{\partial r} \left( \dfrac{\partial f}{\partial y}\right) \\ & = &12r^{2}\dfrac{\partial f}{\partial x}+4r^{3}\left( \dfrac{\partial }{ \partial x}\left( \dfrac{\partial f}{\partial x}\right) \dfrac{\partial x}{ \partial r}+\dfrac{\partial }{\partial y}\left( \dfrac{\partial f}{\partial x }\right) \dfrac{\partial y}{\partial r}\right) +30rs^{2}\dfrac{\partial f}{ \partial y}+15r^{2}s^{2}\left( \dfrac{\partial }{\partial x}\left( \dfrac{ \partial f}{\partial y}\right) \dfrac{\partial x}{\partial r}+\dfrac{ \partial }{\partial y}\left( \dfrac{\partial f}{\partial y}\right) \dfrac{ \partial y}{\partial r}\right) \\ & = &12r^{2}\dfrac{\partial f}{\partial x}+4r^{3}\left( \dfrac{\partial ^{2}f}{ \partial x^{2}}4r^{3}+\dfrac{\partial ^{2}f}{\partial y\partial x} 15r^{2}s^{2}\right) +30rs^{2}\dfrac{\partial f}{\partial y} +15r^{2}s^{2}\left( \dfrac{\partial ^{2}f}{\partial x\partial y}4r^{3}+ \dfrac{\partial ^{2}f}{\partial y^{2}}15r^{2}s^{2}\right) \\ & = &12r^{2}\dfrac{\partial f}{\partial x}+16r^{6}\dfrac{\partial ^{2}f}{ \partial x^{2}}+60r^{5}s^{2}\dfrac{\partial ^{2}f}{\partial y\partial x} +30rs^{2}\dfrac{\partial f}{\partial y}+60r^{5}s^{2}\dfrac{\partial ^{2}f}{ \partial x\partial y}+225r^{4}s^{4}\dfrac{\partial ^{2}f}{\partial y^{2}} \\ & = &12r^{2}\dfrac{\partial f}{\partial x}+16r^{6}\dfrac{\partial ^{2}f}{ \partial x^{2}}+120r^{5}s^{2}\dfrac{\partial ^{2}f}{\partial y\partial x} +30rs^{2}\dfrac{\partial f}{\partial y}+225r^{4}s^{4}\dfrac{\partial ^{2}f}{ \partial y^{2}} \end{eqnarray*}
Calculamos la derivada cruzada
\begin{eqnarray*} \dfrac{\partial ^{2}z}{\partial s\partial r} & = &\dfrac{\partial }{\partial s} \left( \dfrac{\partial z}{\partial r}\right) \\ & = &\dfrac{\partial }{\partial s}\left( 4r^{3}\dfrac{\partial f}{\partial x} +15r^{2}s^{2}\dfrac{\partial f}{\partial y}\right) \\ & = &\dfrac{\partial }{\partial s}\left( 4r^{3}\right) \dfrac{\partial f}{ \partial x}+4r^{3}\dfrac{\partial }{\partial s}\left( \dfrac{\partial f}{ \partial x}\right) +\dfrac{\partial }{\partial s}\left( 15r^{2}s^{2}\right) \dfrac{\partial f}{\partial y}+15r^{2}s^{2}\dfrac{\partial }{\partial s} \left( \dfrac{\partial f}{\partial y}\right) \\ & = &4r^{3}\left( \dfrac{\partial }{\partial x}\left( \dfrac{\partial f}{ \partial x}\right) \dfrac{\partial x}{\partial s}+\dfrac{\partial }{\partial y}\left( \dfrac{\partial f}{\partial x}\right) \dfrac{\partial y}{\partial s} \right) +30r^{2}s\dfrac{\partial f}{\partial y}+15r^{2}s^{2}\left( \dfrac{ \partial }{\partial x}\left( \dfrac{\partial f}{\partial y}\right) \dfrac{ \partial x}{\partial s}+\dfrac{\partial }{\partial y}\left( \dfrac{\partial f }{\partial y}\right) \dfrac{\partial y}{\partial s}\right) \\ & = &4r^{3}\left( \dfrac{\partial ^{2}f}{\partial x^{2}}2s+\dfrac{\partial ^{2}f}{\partial y\partial x}10r^{3}s\right) +30r^{2}s\dfrac{\partial f}{ \partial y}+15r^{2}s^{2}\left( \dfrac{\partial ^{2}f}{\partial x\partial y} 2s+\dfrac{\partial ^{2}f}{\partial y^{2}}10r^{3}s\right) \\ & = &8r^{3}s\dfrac{\partial ^{2}f}{\partial x^{2}}+40r^{6}s\dfrac{\partial ^{2}f}{\partial y\partial x}+30r^{2}s\dfrac{\partial f}{\partial y} +30r^{2}s^{3}\dfrac{\partial ^{2}f}{\partial x\partial y}+150r^{5}s^{3} \end{eqnarray*}
y ahora calculamos
\begin{eqnarray*} \dfrac{\partial ^{2}z}{\partial s^{2}} & = &\dfrac{\partial }{\partial s} \left( \dfrac{\partial z}{\partial s}\right) \\ & = &\dfrac{\partial }{\partial s}\left( 2s\dfrac{\partial f}{\partial x} +10r^{3}s\dfrac{\partial f}{\partial y}\right) \\ & = &\dfrac{\partial }{\partial s}\left( 2s\right) \dfrac{\partial f}{\partial x}+2s\dfrac{\partial }{\partial s}\left( \dfrac{\partial f}{\partial x} \right) +\dfrac{\partial }{\partial s}\left( 10r^{3}s\right) \dfrac{\partial f}{\partial y}+10r^{3}s\dfrac{\partial }{\partial s}\left( \dfrac{\partial f }{\partial y}\right) \\ & = &2\dfrac{\partial f}{\partial x}+2s\left( \dfrac{\partial }{\partial x} \left( \dfrac{\partial f}{\partial x}\right) \dfrac{\partial x}{\partial s}+ \dfrac{\partial }{\partial y}\left( \dfrac{\partial f}{\partial x}\right) \dfrac{\partial y}{\partial s}\right) +10r^{3}\dfrac{\partial f}{\partial y} +10r^{3}s\left( \dfrac{\partial }{\partial x}\left( \dfrac{\partial f}{ \partial y}\right) \dfrac{\partial x}{\partial s}+\dfrac{\partial }{\partial y}\left( \dfrac{\partial f}{\partial y}\right) \dfrac{\partial y}{\partial s} \right) \\ & = &2\dfrac{\partial f}{\partial x}+2s\left( \dfrac{\partial ^{2}f}{\partial x^{2}}\dfrac{\partial x}{\partial s}+\dfrac{\partial ^{2}f}{\partial y\partial x}\dfrac{\partial y}{\partial s}\right) +10r^{3}\dfrac{\partial f}{ \partial y}+10r^{3}s\left( \dfrac{\partial ^{2}f}{\partial x\partial y} \dfrac{\partial x}{\partial s}+\dfrac{\partial ^{2}f}{\partial y^{2}}\dfrac{ \partial y}{\partial s}\right) \\ & = &2\dfrac{\partial f}{\partial x}+2s\left( \dfrac{\partial ^{2}f}{\partial x^{2}}2s+\dfrac{\partial ^{2}f}{\partial y\partial x}10r^{3}s\right) +10r^{3} \dfrac{\partial f}{\partial y}+10r^{3}s\left( \dfrac{\partial ^{2}f}{ \partial x\partial y}2s+\dfrac{\partial ^{2}f}{\partial y^{2}}10r^{3}s\right) \\ & = &2\dfrac{\partial f}{\partial x}+4s^{2}\dfrac{\partial ^{2}f}{\partial x^{2}}+20r^{3}s^{2}\dfrac{\partial ^{2}f}{\partial y\partial x}+10r^{3} \dfrac{\partial f}{\partial y}+20r^{3}s^{2}\dfrac{\partial ^{2}f}{\partial x\partial y}+100r^{6}s^{2}\dfrac{\partial ^{2}f}{\partial y^{2}} \\ & = &2\dfrac{\partial f}{\partial x}+4s^{2}\dfrac{\partial ^{2}f}{\partial x^{2}}+40r^{3}s^{2}\dfrac{\partial ^{2}f}{\partial y\partial x}+10r^{3} \dfrac{\partial f}{\partial y}+100r^{6}s^{2}\dfrac{\partial ^{2}f}{\partial y^{2}} \end{eqnarray*}
Por lo tanto,
\begin{eqnarray*} \dfrac{\partial ^{2}z}{\partial r^{2}} & = &12r^{2}\dfrac{\partial f}{\partial x}+16r^{6}\dfrac{\partial ^{2}f}{\partial x^{2}}+120r^{5}s^{2}\dfrac{ \partial ^{2}f}{\partial y\partial x}+30rs^{2}\dfrac{\partial f}{\partial y} +225r^{4}s^{4}\dfrac{\partial ^{2}f}{\partial y^{2}} \\ \dfrac{\partial ^{2}z}{\partial s\partial r} & = &8r^{3}s\dfrac{\partial ^{2}f }{\partial x^{2}}+40r^{6}s\dfrac{\partial ^{2}f}{\partial y\partial x} +30r^{2}s\dfrac{\partial f}{\partial y}+30r^{2}s^{3}\dfrac{\partial ^{2}f}{ \partial x\partial y}+150r^{5}s^{3} \\ \dfrac{\partial ^{2}z}{\partial s^{2}} & = &2\dfrac{\partial f}{\partial x} +4s^{2}\dfrac{\partial ^{2}f}{\partial x^{2}}+40r^{3}s^{2}\dfrac{\partial ^{2}f}{\partial y\partial x}+10r^{3}\dfrac{\partial f}{\partial y} +100r^{6}s^{2}\dfrac{\partial ^{2}f}{\partial y^{2}} \end{eqnarray*}