Supongamos que \(x\) y \(y\) tienen el mismo signo, en ese caso:
\begin{equation*}
f\left( x,y\right) =\dfrac{72}{xy}.
\end{equation*}
Calculamos los gradientes de \(f\) y \(g\):
\begin{eqnarray*}
\nabla f\left( x,y,z\right) & = & \left( \dfrac{\partial f}{\partial x},\dfrac{
\partial f}{\partial y}\right) =\left( -\dfrac{72}{x^{2}y},-\dfrac{72}{xy^{2}
}\right) \\
\nabla g\left( x,y,z\right) & = & \left( \dfrac{\partial g}{\partial x},\dfrac{
\partial g}{\partial y}\right) =\left( \dfrac{x}{8},\dfrac{2}{9}y\right) .
\end{eqnarray*}
De acuerdo con el método de Lagrange, debemos resolver el sistema de
ecuaciones
\begin{eqnarray*}
\nabla f\left( x,y\right) & = & \lambda \nabla g\left( x,y\right) \\
\dfrac{x^{2}}{16}+\dfrac{y^{2}}{9} & = & 1,
\end{eqnarray*}
es decir
\begin{eqnarray}
-\dfrac{72}{x^{2}y} & = & \dfrac{1}{8}x\lambda \label{15.0}\tag{1} \\
-\dfrac{72}{xy^{2}} & = & \dfrac{2}{9}y\lambda \notag \\
\dfrac{x^{2}}{16}+\dfrac{y^{2}}{9} & = & 1. \notag
\end{eqnarray}
Considerando las dos primeras ecuaciones del sistema anterior, tenemos
\begin{eqnarray*}
-72 & = & \dfrac{x^{3}y}{8}\lambda \\
-72 & = & \dfrac{2}{9}xy^{3}\lambda ,
\end{eqnarray*}
de donde
\begin{eqnarray*}
\dfrac{x^{3}y}{8}\lambda & = & \dfrac{2}{9}xy^{3}\lambda \\
\dfrac{x^{3}y}{8}\lambda -\dfrac{2}{9}xy^{3}\lambda & = & 0 \\
xy\lambda \left( \dfrac{x^{2}}{8}-\dfrac{2}{9}y^{2}\right) & = & 0.
\end{eqnarray*}
Como \(x,y,\lambda \neq 0,\) entonces
\begin{eqnarray*}
\dfrac{x^{2}}{8}-\dfrac{2}{9}y^{2} & = & 0 \\
\left( \dfrac{x}{\sqrt{8}}-\dfrac{\sqrt{2}}{3}y\right) \left( \dfrac{x}{
\sqrt{8}}+\dfrac{\sqrt{2}}{3}y\right) & = & 0,
\end{eqnarray*}
de donde
\begin{equation*}
\dfrac{x}{\sqrt{8}}-\dfrac{\sqrt{2}}{3}y=0 \quad \quad \quad \text{o} \quad
\quad \quad \dfrac{x}{\sqrt{8}}+\dfrac{\sqrt{2}}{3}y=0.
\end{equation*}
- Si \(\dfrac{x}{\sqrt{8}}-\dfrac{\sqrt{2}}{3}y=0,\) entonces
\begin{eqnarray*}
\dfrac{x}{\sqrt{8}}-\dfrac{\sqrt{2}}{3}y & = & 0 \\
y & = & \dfrac{3x}{\sqrt{8}\sqrt{2}} \\
y & = & \dfrac{3}{4}x.
\end{eqnarray*}
- Si \(\dfrac{x}{\sqrt{8}}+\dfrac{\sqrt{2}}{3}y=0,\) entonces
\begin{eqnarray*}
\dfrac{x}{\sqrt{8}}+\dfrac{\sqrt{2}}{3}y & = & 0 \\
y & = & -\dfrac{3x}{\sqrt{8}\sqrt{2}} \\
y & = & -\dfrac{3}{4}x.
\end{eqnarray*}
Ahora sustituimos los valores obtenidos de \(y\) en la restricción.
- Si \(y=\dfrac{3}{4}x,\) entonces
\begin{eqnarray*
\dfrac{x^{2}}{16}+\dfrac{\left( \dfrac{3}{4}x\right) ^{2}}{9} & = & 1 \\
\dfrac{x^{2}}{16}+\dfrac{x^{2}}{16} & = & 1 \\
\dfrac{x^{2}}{8} & = & 1 \\
x^{2} & = & 8 \\
\left\vert x\right\vert & = & \sqrt{8} \\
\left\vert x\right\vert & = & 2\sqrt{2},
\end{eqnarray*}
así
\begin{equation*}
x=2\sqrt{2} \quad \quad \quad \text{o } \quad \quad \quad x=-2\sqrt{2}.
\end{equation*}
- Si \(x=2\sqrt{2},\) entonces
\begin{equation*}
y=\dfrac{3}{4}\left( 2\sqrt{2}\right) =\dfrac{3}{2}\sqrt{2}
\end{equation*}
y \(\lambda \) es
\begin{eqnarray*}
\lambda & = & -\dfrac{72\left( 8\right) }{x^{3}y} \\
& = & -\dfrac{72\left( 8\right) }{\left( 2\sqrt{2}\right) ^{3}\dfrac{3}{2}\sqrt{
2}} \\
& = & -\dfrac{72\left( 8\right) }{8\left( 2\sqrt{2}\right) \dfrac{3}{2}\sqrt{2}}
\\
& = & -12.
\end{eqnarray*}
- Si \(x=-2\sqrt{2},\) entonces
\begin{equation*}
y=\dfrac{3}{4}\left( -2\sqrt{2}\right) =-\dfrac{3}{2}\sqrt{2}
\end{equation*}
y \(\lambda \) es
\begin{eqnarray*}
\lambda & = & -\dfrac{72\left( 8\right) }{\left( -2\sqrt{2}\right) ^{3}\left( -
\dfrac{3}{2}\sqrt{2}\right) } \\
& = & -\dfrac{72\left( 8\right) }{8\left( 2\sqrt{2}\right) \dfrac{3}{2}\sqrt{2}}
\\
& = & -12.
\end{eqnarray*}
- Si \(y=-\dfrac{3}{4}x,\) entonces
\begin{eqnarray*}
\dfrac{x^{2}}{16}+\dfrac{\left( -\dfrac{3}{4}x\right) ^{2}}{9} & = & 1 \\
\dfrac{x^{2}}{16}+\dfrac{x^{2}}{16} & = & 1 \\
\dfrac{x^{2}}{8} & = & 1 \\
x^{2} & = & 8 \\
\left\vert x\right\vert & = & \sqrt{8} \\
\left\vert x\right\vert & = & 2\sqrt{2},
\end{eqnarray*}
así
\begin{equation*}
x=2\sqrt{2} \quad \quad \quad \text{ o } \quad \quad \quad x=-2\sqrt{2}.
\end{equation*}
- Si \(x=2\sqrt{2},\) entonces
\begin{equation*}
y=-\dfrac{3}{4}\left( 2\sqrt{2}\right) =-\dfrac{3}{2}\sqrt{2},
\end{equation*}
como \(x\) y \(y\) deben tener el mismo signo, desechamos este caso.
- Si \(x=-2\sqrt{2},\) entonces
\begin{equation*}
y=-\dfrac{3}{4}\left( -2\sqrt{2}\right) =\dfrac{3}{2}\sqrt{2},
\end{equation*}
como \(x\) y \(y\) deben tener el mismo signo, también desechamos este caso.
En resumen las soluciones del sistema (\ref{15.0}) son
\begin{eqnarray*}
x & = & 2\sqrt{2}, \quad \quad y=\dfrac{3}{2}\sqrt{2}, \quad \quad
\lambda =-12 \\
x & = & -2\sqrt{2}, \quad \quad y=-\dfrac{3}{2}\sqrt{2}, \quad \quad
\lambda =-12.
\end{eqnarray*}
Definimos la función auxiliar
\begin{eqnarray*}
h\left( x,y\right) & = & f\left( x,y\right) -\lambda g\left( x,y\right) \\
& = & \dfrac{72}{xy}-\lambda \left( \dfrac{x^{2}}{16}+\dfrac{y^{2}}{9}-1\right)
.
\end{eqnarray*}
Calculamos las derivadas de \(h\) de orden \(1\).
\begin{eqnarray*}
\dfrac{\partial h }{\partial x}\left( x,y\right) & = & -\dfrac{72}{x^{2}y}
-\lambda \dfrac{x}{8} \\
\dfrac{\partial h }{\partial y}\left( x,y\right) & = & -\dfrac{72}{xy^{2}}
-\lambda \dfrac{2}{9}y.
\end{eqnarray*}
Las derivadas parciales de \(h\) de orden \(2\) son:
\begin{eqnarray*}
\dfrac{\partial ^{2}h }{\partial x^{2}}\left( x,y\right) & = & \dfrac{72\left(
2\right) }{x^{3}y}-\dfrac{1}{8}\lambda =\dfrac{144}{x^{3}y}-\dfrac{1}{8}
\lambda \\
\dfrac{\partial ^{2}h }{\partial y^{2}}\left( x,y\right) & = & \dfrac{72\left(
2\right) }{xy^{3}}-\dfrac{2}{9}\lambda =\dfrac{144}{xy^{3}}-\dfrac{2}{9}
\lambda \\
\dfrac{\partial ^{2}h }{\partial y\partial x}\left( x,y\right) & = & \dfrac{72}{
x^{2}y^{2}}=\dfrac{\partial ^{2}h\left( x,y\right) }{\partial x\partial y}
\end{eqnarray*}
El determinante hessiano limitado es
\begin{eqnarray*}
\left\vert \overline{H}\left( x,y\right) \right\vert & = & \left\vert
\begin{array}{ccc}
0 & \dfrac{\partial g}{\partial x}\left( x,y\right) & \dfrac{\partial g}{
\partial y}\left( x,y\right) \\
& & \\
\dfrac{\partial g}{\partial x}\left( x,y\right) & \dfrac{\partial ^{2}h}{
\partial x^{2}}\left( x,y\right) & \dfrac{\partial ^{2}h}{\partial y\partial
x}\left( x,y\right) \\
& & \\
\dfrac{\partial g}{\partial y}\left( x,y\right) & \dfrac{\partial ^{2}h}{
\partial x\partial y}\left( x,y\right) & \dfrac{\partial ^{2}h}{\partial
y^{2}}\left( x,y\right)
\end{array}
\right\vert \\
& = & \left\vert
\begin{array}{ccc}
0 & \dfrac{x}{8} & \dfrac{2}{9}y \\
& & \\
\dfrac{x}{8} & \dfrac{144}{x^{3}y}-\dfrac{1}{8}\lambda & \dfrac{72}{
x^{2}y^{2}} \\
& & \\
\dfrac{2}{9}y & \dfrac{72}{x^{2}y^{2}} & \dfrac{144}{xy^{3}}-\dfrac{2}{9}
\lambda
\end{array}
\right\vert
\end{eqnarray*}
- Si \(x=2\sqrt{2},\) \(y=\dfrac{3}{2}\sqrt{2\), \(\lambda =-12,\) entonces
\begin{eqnarray*}
\left\vert \overline{H}\left( 2\sqrt{2},\dfrac{3}{2}\sqrt{2}\right)
\right\vert & = & \left\vert
\begin{array}{ccc}
0 & \dfrac{\sqrt{2}}{4} & \dfrac{\sqrt{2}}{3} \\
\dfrac{\sqrt{2}}{4} & \dfrac{144}{\left( 2\sqrt{2}\right) ^{3}\left( \dfrac{3
}{2}\sqrt{2}\right) }-\dfrac{1}{8}\left( -12\right) & \dfrac{72}{\left( 2
\sqrt{2}\right) ^{2}\left( \dfrac{3}{2}\sqrt{2}\right) ^{2}} \\
\dfrac{\sqrt{2}}{3} & \dfrac{72}{\left( 2\sqrt{2}\right) ^{2}\left( \dfrac{3
}{2}\sqrt{2}\right) ^{2}} & \dfrac{144}{2\sqrt{2}\left( \dfrac{3}{2}\sqrt{2}
\right) ^{3}}-\dfrac{2}{9}\left( -12\right)
\end{array}
\right\vert \\
&& \\
& = & \left\vert
\begin{array}{ccc}
0 & \dfrac{\sqrt{2}}{4} & \dfrac{\sqrt{2}}{3} \\
\dfrac{\sqrt{2}}{4} & \dfrac{9}{2} & 2 \\
\dfrac{\sqrt{2}}{3} & 2 & 8
\end{array}
\right\vert \\
& = & -\dfrac{4}{3} < 0.
\end{eqnarray*}
Por el inciso 2 del Teorema 1,
hay un mínimo en \(x=2\sqrt{2},\) \(y=\dfrac{3}{2}\sqrt{2}\) y su valor es
\begin{equation*}
f\left( x,y\right) =\dfrac{72}{\left\vert xy\right\vert }=\dfrac{72}{6}=12.
\end{equation*}
- Si \(x=-2\sqrt{2},\) \(y=-\dfrac{3}{2}\sqrt{2},\) \(\lambda =-12,\) entonces
\begin{eqnarray*}
\left\vert \overline{H}\left( -2\sqrt{2},-\dfrac{3}{2}\sqrt{2}\right)
\right\vert & = & \left\vert
\begin{array}{ccc}
0 & -\dfrac{\sqrt{2}}{4} & -\dfrac{\sqrt{2}}{3} \\
& & \\
-\dfrac{\sqrt{2}}{4} & \dfrac{144}{\left( -2\sqrt{2}\right) ^{3}\left( -
\dfrac{3}{2}\sqrt{2}\right) }-\dfrac{1}{8}\left( -12\right) & \dfrac{72}{
\left( -2\sqrt{2}\right) ^{2}\left( -\dfrac{3}{2}\sqrt{2}\right) ^{2}} \\
& & \\
-\dfrac{\sqrt{2}}{3} & \dfrac{72}{\left( -2\sqrt{2}\right) ^{2}\left( -
\dfrac{3}{2}\sqrt{2}\right) ^{2}} & \dfrac{144}{-2\sqrt{2}\left( -\dfrac{3}{2
}\sqrt{2}\right) ^{3}}-\dfrac{2}{9}\left( -12\right)
\end{array}
\right\vert \\
& & \\
& = & \left\vert
\begin{array}{ccc}
0 & -\dfrac{\sqrt{2}}{4} & -\dfrac{\sqrt{2}}{3} \\
& & \\
-\dfrac{\sqrt{2}}{4} & \dfrac{9}{2} & 2 \\
& & \\
-\dfrac{\sqrt{2}}{3} & 2 & 8
\end{array}
\right\vert \\
& = & -\dfrac{4}{3} < 0.
\end{eqnarray*}
Por el inciso 2 del Teorema 1,
hay un mínimo en \(x=-2\sqrt{2},y=-\dfrac{3}{2}\sqrt{2}\) y su
valor es
\begin{equation*}
f\left( x,y\right) =\dfrac{72}{\left\vert xy\right\vert }=\dfrac{72}{6}=12.
\end{equation*}