Series de Taylor

\(\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots +\frac{x^k}{k!} +\cdots \)

\(R=\infty\)


\( \text{sen}(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots + \frac{(-1)^k x^{2k+1}}{(2k+1)!} + \cdots \)

\(R=\infty\)


\(f(x) = \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots + \frac{(-1)^k x^{2k}}{(2k)!} + \cdots \)

\(R=\infty\)


\( \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots + \frac{(-1)^{k+1} x^{k}}{k} + \cdots \)

\(R=1\)


\( \exp(-x^2) = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \cdots + \frac{(-1)^k x^{2k}}{k!} + \cdots \)

\(R=\infty\)


\( 1/(1+x^2) = 1 - x^2 + x^4 - x^6 + \cdots + (-1)^{k} x^{2k} + \cdots \)

\(R=1\)